Intraindividual comparison of gadolinium- and iodine-enhanced 64-slice multidetector CT pulmonary angiography for the detection of pulmonary embolism in a porcine model.

Link:
Autor/in:
Erscheinungsjahr:
2011
Medientyp:
Text
Beschreibung:
  • This study is an evaluation of the diagnostic accuracy of gadolinium-enhanced computed tomography pulmonary angiography (CTPA) for the detection of pulmonary embolism (PE) in comparison with iodine-enhanced CTPA. PE was induced in five anesthetized pigs by administration of blood clots through an 11-F catheter inside the jugular vein. Animals underwent CTPA in breathhold with i.v. bolus injection of 50 ml gadopentetate dimeglumine (0.4 mmol/kg, 4 ml/s). Subsequently, CTPA was performed using the same imaging parameters but under administration of 70 ml nonionic iodinated contrast material (400 mg/ml, 4 ml/s). All images were reconstructed with 1 mm slice thickness. A consensus readout of the iodium-enhanced CTPAs by both radiologists served as reference standard. Gadolinium-enhanced CTPAs were evaluated independently by two experienced radiologists, and differences in detection rate between both contrast agents were assessed on a per embolus basis using the Wilcoxon signed-rank test. Interobserver agreement was determined by calculation of values. PE was diagnosed independently by both readers in all five pigs by the use of gadolinium-enhanced CTPA. Out of 60 pulmonary emboli detected in the iodine-enhanced scans, 47 (78.3%; reader 1) and 44 (62.8%; reader 2) emboli were detected by the use of gadolinium. All 13 (100%) emboli in lobar arteries (by both readers) and 26 (reader 1) and 25 (reader 2) out of 27 emboli (96.3% and 92.6%) in segmental arteries were detected by the use of the gadolinium-enhanced CTPA. In subsegmental arteries, only 8 (40%; reader 1) and 6 (30%; reader 2) out of 20 emboli were detected by the gadolinium-enhanced CTPA. By comparing both scans on a per vessel basis (Wilcoxon test), Gd-enhanced CTPA was significantly inferior in emboli detection on subsegmental level (P <0.0001). The interobserver agreement was excellent on lobar and segmental level ( = 1.0 and 0.93, respectively), whereas readers only reached moderate agreement for PE evaluation on subsegmental level ( = 0.56). Compared to conventional CTPA with iodinated contrast media, gadolinium-based contrast agents achieve an equivalent diagnostic accuracy in detection of PE down to segmental level. Gadolinium-enhanced CTPA may be considered as an alternative for the diagnostic workup of acute pulmonary embolism in patients with contraindications to iodinated contrast agents.
  • This study is an evaluation of the diagnostic accuracy of gadolinium-enhanced computed tomography pulmonary angiography (CTPA) for the detection of pulmonary embolism (PE) in comparison with iodine-enhanced CTPA. PE was induced in five anesthetized pigs by administration of blood clots through an 11-F catheter inside the jugular vein. Animals underwent CTPA in breathhold with i.v. bolus injection of 50 ml gadopentetate dimeglumine (0.4 mmol/kg, 4 ml/s). Subsequently, CTPA was performed using the same imaging parameters but under administration of 70 ml nonionic iodinated contrast material (400 mg/ml, 4 ml/s). All images were reconstructed with 1 mm slice thickness. A consensus readout of the iodium-enhanced CTPAs by both radiologists served as reference standard. Gadolinium-enhanced CTPAs were evaluated independently by two experienced radiologists, and differences in detection rate between both contrast agents were assessed on a per embolus basis using the Wilcoxon signed-rank test. Interobserver agreement was determined by calculation of values. PE was diagnosed independently by both readers in all five pigs by the use of gadolinium-enhanced CTPA. Out of 60 pulmonary emboli detected in the iodine-enhanced scans, 47 (78.3%; reader 1) and 44 (62.8%; reader 2) emboli were detected by the use of gadolinium. All 13 (100%) emboli in lobar arteries (by both readers) and 26 (reader 1) and 25 (reader 2) out of 27 emboli (96.3% and 92.6%) in segmental arteries were detected by the use of the gadolinium-enhanced CTPA. In subsegmental arteries, only 8 (40%; reader 1) and 6 (30%; reader 2) out of 20 emboli were detected by the gadolinium-enhanced CTPA. By comparing both scans on a per vessel basis (Wilcoxon test), Gd-enhanced CTPA was significantly inferior in emboli detection on subsegmental level (P <0.0001). The interobserver agreement was excellent on lobar and segmental level ( = 1.0 and 0.93, respectively), whereas readers only reached moderate agreement for PE evaluation on subsegmental level ( = 0.56). Compared to conventional CTPA with iodinated contrast media, gadolinium-based contrast agents achieve an equivalent diagnostic accuracy in detection of PE down to segmental level. Gadolinium-enhanced CTPA may be considered as an alternative for the diagnostic workup of acute pulmonary embolism in patients with contraindications to iodinated contrast agents.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem des UKE

Interne Metadaten
Quelldatensatz
oai:pure.atira.dk:publications/7db14a92-c532-43ad-a649-dd6c416d29d1