Improving reinforcement learning with interactive feedback and affordances

Link:
Autor/in:
Verlag/Körperschaft:
IEEE
Erscheinungsjahr:
2014
Medientyp:
Text
Schlagworte:
  • learning (artificial intelligence)
  • multi-agent systems
  • action-space pruning
  • affordances
  • agent knowledge
  • inter-agent training
  • interactive feedback
  • knowledge transfer
  • reinforcement learning
  • Cleaning
  • Convergence
  • Equations
  • Green products
  • Learning (artificial intelligence)
  • Robots
  • Training
Beschreibung:
  • Interactive reinforcement learning constitutes an alternative for improving convergence speed in reinforcement learning methods. In this work, we investigate inter-agent training and present an approach for knowledge transfer in a domestic scenario where a first agent is trained by reinforcement learning and afterwards transfers selected knowledge to a second agent by instructions to achieve more efficient training. We combine this approach with action-space pruning by using knowledge on affordances and show that it significantly improves convergence speed in both classic and interactive reinforcement learning scenarios.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/8008623c-f8c8-4364-acaf-9bd7be8a27c3