Simultaneous targeting of Aurora kinases and Bcr-Abl kinase by the small molecule inhibitor PHA-739358 is effective against imatinib-resistant BCR-ABL mutations including T315I.

Link:
Autor/in:
Erscheinungsjahr:
2008
Medientyp:
Text
Beschreibung:
  • The emergence of resistance to imatinib (IM) mediated by mutations in the BCR-ABL domain has become a major challenge in the treatment of chronic myeloid leukemia (CML). Here, we report on studies performed with a novel small molecule inhibitor, PHA-739358, which selectively targets Bcr-Abl and Aurora kinases A to C. PHA-739358 exhibits strong antiproliferative and proapoptotic activity against a broad panel of human BCR-ABL-positive and -negative cell lines and against murine BaF3 cells ectopically expressing wild-type (wt) or IM-resistant BCR-ABL mutants, including T315I. Pharmacologic synergism of IM and PHA-739358 was observed in leukemia cell lines with subtotal resistance to IM. Treatment with PHA-739358 significantly decreased phosphorylation of histone H3, a marker of Aurora B activity and of CrkL, a downstream target of Bcr-Abl, suggesting that PHA-739358 acts via combined inhibition of Bcr-Abl and Aurora kinases. Moreover, strong antiproliferative effects of PHA-739358 were observed in CD34(+) cells derived from untreated CML patients and from IM-resistant individuals in chronic phase or blast crisis, including those harboring the T315I mutation. Thus, PHA-739358 represents a promising new strategy for treatment of IM-resistant BCR-ABL-positive leukemias, including those harboring the T315I mutation. Clinical trials investigating this compound in IM-resistant CML have recently been initiated.
  • The emergence of resistance to imatinib (IM) mediated by mutations in the BCR-ABL domain has become a major challenge in the treatment of chronic myeloid leukemia (CML). Here, we report on studies performed with a novel small molecule inhibitor, PHA-739358, which selectively targets Bcr-Abl and Aurora kinases A to C. PHA-739358 exhibits strong antiproliferative and proapoptotic activity against a broad panel of human BCR-ABL-positive and -negative cell lines and against murine BaF3 cells ectopically expressing wild-type (wt) or IM-resistant BCR-ABL mutants, including T315I. Pharmacologic synergism of IM and PHA-739358 was observed in leukemia cell lines with subtotal resistance to IM. Treatment with PHA-739358 significantly decreased phosphorylation of histone H3, a marker of Aurora B activity and of CrkL, a downstream target of Bcr-Abl, suggesting that PHA-739358 acts via combined inhibition of Bcr-Abl and Aurora kinases. Moreover, strong antiproliferative effects of PHA-739358 were observed in CD34(+) cells derived from untreated CML patients and from IM-resistant individuals in chronic phase or blast crisis, including those harboring the T315I mutation. Thus, PHA-739358 represents a promising new strategy for treatment of IM-resistant BCR-ABL-positive leukemias, including those harboring the T315I mutation. Clinical trials investigating this compound in IM-resistant CML have recently been initiated.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem des UKE

Interne Metadaten
Quelldatensatz
oai:pure.atira.dk:publications/703850de-04d2-49ea-9bab-a082adcfd938