The ubiquitin-proteasome system in cardiac dysfunction.

Link:
Autor/in:
Erscheinungsjahr:
2008
Medientyp:
Text
Beschreibung:
  • Since proteins play crucial roles in all biological processes, the finely tuned equilibrium between their synthesis and degradation regulates cellular homeostasis. Controlling the quality of proteome informational content is essential for cell survival and function. After initial synthesis, membrane and secretory proteins are modified, folded, and assembled in the endoplasmic reticulum, whereas other proteins are synthesized and processed in the cytosol. Cells have different protein quality control systems, the molecular chaperones, which help protein folding and stabilization, and the ubiquitin-proteasome system (UPS) and lysosomes, which degrade proteins. It has generally been assumed that UPS and lysosomes are regulated independently and serve distinct functions. The UPS degrades both cytosolic, nuclear proteins, and myofibrillar proteins, whereas the lysosomes degrade most membrane and extracellular proteins by endocytosis as well as cytosolic proteins and organelles via autophagy. Over the last two decades, the UPS has been increasingly recognized as a major system in several biological processes including cell proliferation, adaptation to stress and cell death. More recently, activation or impairment of the UPS has been reported in cardiac disease and recent evidence indicate that autophagy is a key mechanism to maintain cardiac structure and function. This review mainly focuses on the UPS and its various components in healthy and diseased heart, but also summarizes recent data suggesting parallel activation of the UPS and autophagy in cardiac disease.
  • Since proteins play crucial roles in all biological processes, the finely tuned equilibrium between their synthesis and degradation regulates cellular homeostasis. Controlling the quality of proteome informational content is essential for cell survival and function. After initial synthesis, membrane and secretory proteins are modified, folded, and assembled in the endoplasmic reticulum, whereas other proteins are synthesized and processed in the cytosol. Cells have different protein quality control systems, the molecular chaperones, which help protein folding and stabilization, and the ubiquitin-proteasome system (UPS) and lysosomes, which degrade proteins. It has generally been assumed that UPS and lysosomes are regulated independently and serve distinct functions. The UPS degrades both cytosolic, nuclear proteins, and myofibrillar proteins, whereas the lysosomes degrade most membrane and extracellular proteins by endocytosis as well as cytosolic proteins and organelles via autophagy. Over the last two decades, the UPS has been increasingly recognized as a major system in several biological processes including cell proliferation, adaptation to stress and cell death. More recently, activation or impairment of the UPS has been reported in cardiac disease and recent evidence indicate that autophagy is a key mechanism to maintain cardiac structure and function. This review mainly focuses on the UPS and its various components in healthy and diseased heart, but also summarizes recent data suggesting parallel activation of the UPS and autophagy in cardiac disease.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem des UKE

Interne Metadaten
Quelldatensatz
oai:pure.atira.dk:publications/7098f033-8bd6-4e81-aaed-7e3a187b2bbb