A surprising property of uniformly best linear affine estimation in linear regression when prior information is fuzzy

Link:
Autor/in:
Erscheinungsjahr:
2010
Medientyp:
Text
Schlagworte:
  • Estimation
  • Mean square error
  • Optimization
  • Control
  • Mean Field
  • Optimal Control
  • Estimation
  • Mean square error
  • Optimization
  • Control
  • Mean Field
  • Optimal Control
Beschreibung:
  • It is already shown in Arnold and Stahlecker (2009) that. in linear regression, a uniformly best estimator exists in the class of all Gamma-compatible linear affine estimators. Here, prior information is given by a fuzzy set Gamma defined by its ellipsoidal alpha-cuts. Surprisingly, such a uniformly best linear affine estimator is uniformly best not only in the class of all Gamma-compatible linear affine estimators but also in the class of all estimators satisfying a very weak and sensible condition. This property of a uniformly best linear affine estimator is shown in the present paper. Furthermore, two illustrative special cases are mentioned, where a generalized least squares estimator on the one hand and a general ridge or Kuks-Olman estimator on the other hand turn out to be uniformly best. (C) 2009 Elsevier B.V. All rights reserved.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/deb57f55-c3b5-4a35-a3cb-6e09e6ddf7bc