Interface-induced chiral domain walls, spin spirals and skyrmions revealed by spin-polarized scanning tunneling microscopy

Link:
Autor/in:
Erscheinungsjahr:
2014
Medientyp:
Text
Schlagworte:
  • Magnets
  • Domain walls
  • Magnetic skyrmions
  • Magnetic Anisotropy
  • Magnetization
  • Magnetism
  • Magnets
  • Domain walls
  • Magnetic skyrmions
  • Magnetic Anisotropy
  • Magnetization
  • Magnetism
  • skyrmions
  • spin spirals
  • spin-polarized scanning tunneling microscopy
  • chiral domain walls
Beschreibung:
  • The spin textures of ultra-thin magnetic layers exhibit surprising variety. The loss of inversion symmetry at the interface of the magnetic layer and substrate gives rise to the so-called Dzyaloshinskii-Moriya interaction which favors non-collinear spin arrangements with unique rotational sense. Here we review the application of spin-polarized scanning tunneling microscopy to such systems, which has led to the discovery of interface-induced chiral domain walls and spin spirals. Recently, different interface-driven skyrmion lattices have been found, and the writing as well as the deleting of individual skyrmions based on local spin-polarized current injection has been demonstrated. These interface-induced non-collinear magnetic states offer new exciting possibilities to study fundamental magnetic interactions and to tailor material properties for spintronic applications.
Lizenz:
  • info:eu-repo/semantics/closedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/9238d127-07de-4e86-af71-b95dda26a1f4