SOFNet: SAR-Optical Fusion Network for Land Cover Classification

Link:
Autor/in:
Verlag/Körperschaft:
IEEE
Erscheinungsjahr:
2021
Medientyp:
Text
Beschreibung:
  • The objective of this research is to realize automatic land cover classification from synthetic aperture radar (SAR) and multispectral remote sensing imagery. We develop a SAR-optical fusion network (SOFNet) with the symmetric cross entropy (SCE) loss to utilize both the SAR and optical information in a novel deep neural network. The proposed framework has been trained on the public SEN12MS dataset and tested on the 2020 IEEE-GRSS Data Fusion Contest (DFC2020) dataset. Experimental results show that our approach takes full advantage of multimodal information and outperforms the state-of-the-art convolutional architectures.
Lizenz:
  • info:eu-repo/semantics/openAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/7401b499-043c-4064-94c5-9231f0a1dae5