Optimizing Hyperparameters of Support Vector Machines by Genetic Algorithms

Link:
Autor/in:
Verlag/Körperschaft:
CSREA Press
Erscheinungsjahr:
2005
Medientyp:
Text
Beschreibung:
  • In this paper, a combination of genetic algo- rithms and support vector machines (SVMs) is proposed. SVMs are used for solving classification tasks, whereas genetic algorithms are optimization heuristics combining direct and stochastic search within a solution space. Here, the solution space is formed by combinations of different SVM's kernel functions and kernel parameters. We investigate classification performance of evolutionary constructed SVMs in a complex real-world scenario of direct marketing.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/e52e8c43-8646-4707-94cb-5a45a8b5ef78