Zum Inhalt springen
A shorter proof of Kanter's Bessel function concentration bound
-
Link:
-
-
Autor/in:
-
-
Erscheinungsjahr:
-
2007
-
Medientyp:
-
Text
-
Schlagworte:
-
-
Analytic inequalities
-
Bernoulli convolution
-
Concentration function
-
Modified Bessel function
-
Poisson binomial distribution
-
Symmetric three point convolution
-
Symmetrized Poisson distribution
-
Beschreibung:
-
-
We give a shorter proof of Kanter's (J. Multivariate Anal. 6, 222-236, 1976) sharp Bessel function bound for concentrations of sums of independent symmetric random vectors. We provide sharp upper bounds for the sum of modified Bessel functions I0(x)+ I1(x), which might be of independent interest. Corollaries improve concentration or smoothness bounds for sums of independent random variables due to Čekanavičius & Roos (Lith. Math. J. 46, 54-91, 2006); Roos (Bernoulli, 11, 533-557, 2005), Barbour & Xia (ESAIM Probab. Stat. 3, 131-150, 1999), and Le Cam (Asymptotic Methods in Statistical Decision Theory. Springer, Berlin Heidelberg New York, 1986). © Springer-Verlag 2007.
-
Lizenz:
-
-
info:eu-repo/semantics/closedAccess
-
Quellsystem:
-
Forschungsinformationssystem der UHH
Interne Metadaten
- Quelldatensatz
- oai:www.edit.fis.uni-hamburg.de:publications/65250b55-5e75-4391-b8ea-82ae087e6d3d