The dual-fermion approach offers a way to perform diagrammatic expansion around the dynamical mean field theory. Using this formalism, the influence of antiferromagnetic fluctuations on the self-energy is taken into account through ladder-type diagrams in the particle-hole channel. The resulting phase diagram for the (quasi-)two-dimensional Hubbard model exhibits antiferromagnetism and d-wave superconductivity. Furthermore, a uniform charge instability, i.e., phase separation, is obtained in the low-doping regime around the Mott insulator. We also examine spin/charge density wave fluctuations including d-wave symmetry. The model exhibits a tendency towards an unconventional charge density wave, but no divergence of the susceptibility is found.