We refine our earlier work on the existence and uniqueness of E-infinity structures on K-theoretic spectra to show that at each prime p, the connective Adams summand has an essentially unique structure as a commutative S-algebra. For the p-completion we show that the McClure-Staffeldt model for it is equivalent as an E-infinity ring spectrum to the connective cover of the periodic Adams summand. We establish Bousfield equivalence between the connective cover, c(E_n), of the Lubin-Tate spectrum E_n and BP and propose c(E_n) as an E-infinity approximation to the latter.