Cluster Algebras for Feynman Integrals

Link:
Autor/in:
Erscheinungsjahr:
2021
Medientyp:
Text
Schlagworte:
  • High Energy Physics - Theory
  • High Energy Physics - Phenomenology
Beschreibung:
  • We initiate the study of cluster algebras in Feynman integrals in dimensional regularization. We provide evidence that four-point Feynman integrals with one off-shell leg are described by a C2 cluster algebra, and we find cluster adjacency relations that restrict the allowed function space. By embedding C2 inside the A3 cluster algebra, we identify these adjacencies with the extended Steinmann relations for six-particle massless scattering. The cluster algebra connection we find restricts the functions space for vector boson or Higgs plus jet amplitudes and for form factors recently considered in N =4 super Yang-Mills. We explain general procedures for studying relationships between alphabets of generalized polylogarithmic functions and cluster algebras and use them to provide various identifications of one-loop alphabets with cluster algebras. In particular, we show how one can obtain one-loop alphabets for five-particle scattering from a recently discussed dual conformal eight-particle alphabet related to the G (4 ,8 ) cluster algebra.

Lizenz:
  • info:eu-repo/semantics/openAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/14c67764-4db0-4985-a398-a33aaaf957be