Investigation of the Mechanics of Nanocontacts Using a Vibrating Cantilever Technique

Link:
Autor/in:
Verlag/Körperschaft:
Springer Netherlands
Erscheinungsjahr:
2001
Medientyp:
Text
Beschreibung:
  • A vibrating cantilever technique is presented, which allows the continuous measurement of the tip-sample interaction force F int(z) in the contact as well as in the non-contact region as a function of the tip-sample distance z. The method relies on the measurement of the frequency difference Δf = f — f0 between the eigenfrequency f 0 of the free cantilever and the actual resonance frequency f of the cantilever, which is influenced by the tip-sample interaction potential.
    From such frequency shift data, F int(z) can be reconstructed, as we will demonstrate with the example of a silicon tip vibrating near a graphite surface. The resulting F int(z)-curves are subsequently used to extract parameters like the adhesion force F ad or the point of contact Z c . A detailed comparison with suitable model interactions additionally opens an elegant way to investigate the mechanics of the nanocontact, which behaves in good approximation as expected from the so-called Hertz-plus-offset model.
Lizenz:
  • info:eu-repo/semantics/closedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/e9495fbd-9b30-4f49-b8de-9c4a6979e631