Explainable and Explorable Decision Support

Link:
Autor/in:
Beteiligte Personen:
  • Braun, Tanya
  • Jäschke, Robert
  • Cristea, Diana
Verlag/Körperschaft:
Springer
Erscheinungsjahr:
2022
Medientyp:
Text
Schlagworte:
  • Decision support
  • Lifting
  • Multi query answering
Beschreibung:
  • An effective decision support system requires a user’s trust in its results, which are based on expected utilities of different action plans. As such, a result needs to be explainable and explorable, providing alternatives and additional information in a proactive way, instead of retroactively answering follow-up questions to a single action plan as output. Therefore, this paper presents LEEDS, an algorithm that computes alternative action plans, identifies groups of interest, and answers marginal queries for those groups to provide a comprehensive overview supporting a user. LEEDS leverages the strengths of gate models, lifting, and the switched lifted junction tree algorithm for efficient explainable and explorable decision support.
Lizenz:
  • info:eu-repo/semantics/closedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/0c64a431-f817-4dec-972d-e0faa0900a16