Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm
- Link:
- Autor/in:
- Erscheinungsjahr:
- 2018
- Medientyp:
- Text
- Schlagworte:
-
- coherence
- integrated photonics
- silicon
- supercontinuum
- Beschreibung:
-
Efficient complementary metal-oxide semiconductor-based nonlinear optical devices in the near-infrared are in strong demand. Due to two-photon absorption in silicon, however, much nonlinear research is shifting towards unconventional photonics platforms. In this work, we demonstrate the generation of an octave-spanning coherent supercontinuum in a silicon waveguide covering the spectral region from the near- to shortwave-infrared. With input pulses of 18 pJ in energy, the generated signal spans the wavelength range from the edge of the silicon transmission window, approximately 1.06 to beyond 2.4 μm, with a -20 dB bandwidth covering 1.124-2.4 μm. An octave-spanning supercontinuum was also observed at the energy levels as low as 4 pJ (-35 dB bandwidth). We also measured the coherence over an octave, obtaining , in good agreement with the simulations. In addition, we demonstrate optimization of the third-order dispersion of the waveguide to strengthen the dispersive wave and discuss the advantage of having a soliton at the long wavelength edge of an octave-spanning signal for nonlinear applications. This research paves the way for applications, such as chip-scale precision spectroscopy, optical coherence tomography, optical frequency metrology, frequency synthesis and wide-band wavelength division multiplexing in the telecom window.
- Lizenz:
-
- info:eu-repo/semantics/openAccess
- Quellsystem:
- Forschungsinformationssystem der UHH
Interne Metadaten
- Quelldatensatz
- oai:www.edit.fis.uni-hamburg.de:publications/241a7bbd-82af-428a-8875-fa125e5e44b9