An integrable system is introduced, which is a generalization of the sl (2) quantum affine Gaudin model. Among other things, the Hamiltonians are constructed and their spectrum is calculated using the ODE/IQFT approach. The model fits into the framework of Yang-Baxter integrability. This opens a way for the systematic quantization of a large class of integrable non-linear sigma models. There may also be some interest in terms of Condensed Matter applications, as the theory can be thought of as a multiparametric generalization of the Kondo model.