Zum Inhalt springen
A fundamental theorem for dimension-free Möbius sphere geometries
-
Link:
-
-
Autor/in:
-
-
Erscheinungsjahr:
-
2008
-
Medientyp:
-
Text
-
Schlagworte:
-
-
Dimension-free geometry
-
Functional equation
-
Isomorphism of geometries
-
Möbius geometry of arbitrary (finite or infinite) dimension
-
Real inner product space
-
Beschreibung:
-
-
Let (X, δ) and (V, ε) be real inner product spaces of (finite or infinite) dimensions dim X, dim V greater than 1 (see our book [1] for special notions, results and the notation applied in the present paper). Especially the following Theorem 2 will be proved. The Möbius sphere geometries (X ∪ {∞}, double-struck M(X,δ)), (V ∪ {∞}, double-struck M(V,ε)) over (X,δ), (V,ε), respectively, where double-struck M is the Möbius group, are isomorphic (see [1], p. 16 f) if, and only if, (X,δ) ≅ (V,ε) (see [1], p. 1 f). © 2008 Birkhäuser Verlag AG.
-
Lizenz:
-
-
info:eu-repo/semantics/closedAccess
-
Quellsystem:
-
Forschungsinformationssystem der UHH
Interne Metadaten
- Quelldatensatz
- oai:www.edit.fis.uni-hamburg.de:publications/cd1a43c2-f989-49b3-8b4c-737a798c20ba