Zum Inhalt springen
An estimate of the Lorenz energy cycle for the World Ocean based on the 1/10°STORM/NCEP simulation
- Link:
-
- Autor/in:
-
- Erscheinungsjahr:
- 2012
- Medientyp:
- Text
- Schlagworte:
-
- Ocean circulation
- Ocean dynamics
- Ocean models
- Baroclinic
- Differential heating
- Eddy kinetic energy
- Energy cycle
- Energy exchanges
- Energy pathway
- General circulation
- Mesoscale eddy
- Ocean model
- Rate-of-energy
- Surface buoyancy flux
- Time varying
- World Ocean
- Kinetic energy
- Oceanography
- Potential energy
- Kinetics
- baroclinic mode
- baroclinic motion
- computer simulation
- dissipation
- estimation method
- kinetic energy
- oceanic circulation
- potential energy
- wind field
- Beschreibung:
-
- This paper presents an estimate of the oceanic Lorenz energy cycle derived from a 1/ 10 ° simulation forced by 6-hourly fluxes obtained from NCEP-NCAR reanalysis-1. The total rate of energy generation amounts to 6.6 TW, of which 1.9 TW is generated by the time-mean winds and 2.2 TW by the time-varying winds. The dissipation of kinetic energy amounts to 4.4 TW, of which 3 TWoriginate from the dissipation of eddy kinetic energy. The energy exchange between reservoirs is dominated by the baroclinicpathway and the pathway that distributes the energy generated by the time-mean winds. The former converts 0.7 to 0.8 TW mean available potential energy to eddy available potential energy and finallyto eddy kinetic energy, whereas the latter converts 0.5 TW mean kinetic energy to mean available potential energy. This energy cycle differs from the atmospheric one in two aspects. First, the generation of the mean kinetic and mean available potential energy is each, to a first approximation, balancedbythe dissipation. The interaction of the oceanic general circulation with mesoscale eddies is hence less crucial than the corresponding interaction in the atmosphere. Second, the baroclinic pathway in the ocean is facilitated not only by the surface buoyancy flux but also by the winds through a conversion of 0.5 TW mean kinetic energy to mean available potential energy. In the atmosphere, the respective conversion is almost absent and the baroclinic energy pathway is driven solely by the differential heating. © 2012 American Meteorological Society.
- This paper presents an estimate of the oceanic Lorenz energy cycle derived from a 1/ 10 ° simulation forced by 6-hourly fluxes obtained from NCEP-NCAR reanalysis-1. The total rate of energy generation amounts to 6.6 TW, of which 1.9 TW is generated by the time-mean winds and 2.2 TW by the time-varying winds. The dissipation of kinetic energy amounts to 4.4 TW, of which 3 TWoriginate from the dissipation of eddy kinetic energy. The energy exchange between reservoirs is dominated by the baroclinicpathway and the pathway that distributes the energy generated by the time-mean winds. The former converts 0.7 to 0.8 TW mean available potential energy to eddy available potential energy and finallyto eddy kinetic energy, whereas the latter converts 0.5 TW mean kinetic energy to mean available potential energy. This energy cycle differs from the atmospheric one in two aspects. First, the generation of the mean kinetic and mean available potential energy is each, to a first approximation, balancedbythe dissipation. The interaction of the oceanic general circulation with mesoscale eddies is hence less crucial than the corresponding interaction in the atmosphere. Second, the baroclinic pathway in the ocean is facilitated not only by the surface buoyancy flux but also by the winds through a conversion of 0.5 TW mean kinetic energy to mean available potential energy. In the atmosphere, the respective conversion is almost absent and the baroclinic energy pathway is driven solely by the differential heating. © 2012 American Meteorological Society.
- Lizenz:
-
- info:eu-repo/semantics/openAccess
- Quellsystem:
- Forschungsinformationssystem der UHH
Interne Metadaten
- Quelldatensatz
- oai:www.edit.fis.uni-hamburg.de:publications/1ee4577b-4891-4516-89bb-a62b79ece22f