Quench-induced resonant tunneling mechanisms of bosons in an optical lattice with harmonic confinement

Link:
Autor/in:
Erscheinungsjahr:
2017
Medientyp:
Text
Schlagworte:
  • Lattices
  • Gases
  • Harmonic trap
  • Atoms
  • Bose-Einstein Condensates
  • Lattices
  • Gases
  • Harmonic trap
  • Atoms
  • Bose-Einstein Condensates
Beschreibung:
  • The nonequilibrium dynamics of small boson ensembles in a one-dimensional optical lattice is explored upon a sudden quench of an additional harmonic trap from strong to weak confinement. We find that the competition between the initial localization and the repulsive interaction leads to a resonant response of the system for intermediate quench amplitudes, corresponding to avoided crossings in the many-body eigenspectrum with varying final trap frequency. In particular, we show that these avoided crossings can be utilized to prepare the system in a desired state. The dynamical response is shown to depend on both the interaction strength as well as the number of atoms manifesting the many-body nature of the tunneling dynamics.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/a65f9427-a251-4312-83ee-004eb2973b97