SL(2,Z)-action for ribbon quasi-Hopf algebras

Link:
Autor/in:
Erscheinungsjahr:
2019
Medientyp:
Text
Schlagworte:
  • Braided tensor categories
  • Mapping class group representations
  • Quasi-Hopf algebras
Beschreibung:
  • We study the universal Hopf algebra L of Majid and Lyubashenko in the case that the underlying ribbon category is the category of representations of a finite dimensional ribbon quasi-Hopf algebra A. We show that L=A⁎ with coadjoint action and compute the Hopf algebra structure morphisms of L in terms of the defining data of A. We give explicitly the condition on A which makes Rep A factorisable and compute Lyubashenko's projective SL(2,Z)-action on the centre of A in this case. The point of this exercise is to provide the groundwork for the applications to ribbon categories arising in logarithmic conformal field theories – in particular symplectic fermions and Wp-models – and to test a conjectural non-semisimple Verlinde formula.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/fab04428-79ac-49de-a203-028032f25198