Control of Nuclear Dynamics through Conical Intersections and Electronic Coherences

Link:
Autor/in:
Erscheinungsjahr:
2018
Medientyp:
Text
Beschreibung:
  • The effect of nuclear dynamics and conical intersections on electronic coherences is investigated employing a two-state, two-mode linear vibronic coupling model. Exact quantum dynamical calculations are performed using the multiconfiguration time-dependent Hartree method. It is found that the presence of a nonadiabatic coupling close to the Franck-Condon point can preserve electronic coherence to some extent. Additionally, the possibility of steering the nuclear wave packets by imprinting a relative phase between the electronic states during the photoionization process is discussed. It is found that the steering of nuclear wave packets is possible given that a coherent electronic wave packet embodying the phase difference passes through a conical intersection. A conical intersection close to the Franck-Condon point is thus a necessary prerequisite for control, providing a clear path towards attochemistry.
Lizenz:
  • info:eu-repo/semantics/openAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/a660db3d-6020-4cf7-a58f-8d5831618f7b