The thermal stability of atomic-scale skyrmions is of high relevance for potential spintronics applications and validation of theoretical models. We investigated Pd/Fe nanoislands on an Ir(111) substrate as a function of temperature and magnetic field. Utilizing noncollinear magnetoresistance contrast in scanning tunneling microscopy, the thermomagnetic phase space is explored up to 3 T within a temperature range between 1 K to 100 K. Evidence is found for the spin spiral, field-polarized, and fluctuating disordered magnetic phases. Evidence for the presence of atomic-scale skyrmions at up to approximately 80 K is found, irrespective of considerable magnetization dynamics arising from thermal agitation.