Electron-Spin-Resonance in a proximity-coupled MoS2/Graphene van-der-Waals heterostructure

Link:
Autor/in:
Verlag/Körperschaft:
Hamburg University of Technology
Erscheinungsjahr:
2022
Medientyp:
Text
Schlagworte:
  • Physics - Mesoscopic Systems and Quantum Hall Effect
  • 530: Physik
  • 600: Technik
Beschreibung:
  • Coupling graphene's excellent electron and spin transport properties with higher spin-orbit coupling material allows tackling the hurdle of spin manipulation in graphene, due to the proximity to van-der-Waals layers. Here we use magneto transport measurements to study the electron spin resonance on a combined system of graphene and MoS2 at 1.5K. The electron spin resonance measurements are performed in the frequency range of 18-33GHz, which allows us to determine the g-factor in the system. We measure average g-factor of 1.91 for our hybrid system which is a considerable shift compared to what is observed in graphene on SiO2. This is a clear indication of proximity induced SOC in graphene in accordance with theoretical predictions.
Beziehungen:
DOI 10.1063/5.0077077
Lizenzen:
  • info:eu-repo/semantics/openAccess
  • https://creativecommons.org/licenses/by/4.0/
Quellsystem:
TUHH Open Research

Interne Metadaten
Quelldatensatz
oai:tore.tuhh.de:11420/12149