Taming Reasoning in Temporal Probabilistic Relational Models

Link:
Autor/in:
Beteiligte Personen:
  • De Giacomo, Giuseppe
  • Catala, Alejandro
  • Dilkina, Bistra
  • Milano, Michaela
  • Barro, Senén
  • Bugarín, Alberto
  • Lang, Jérôme
Verlag/Körperschaft:
IOS Press
Erscheinungsjahr:
2020
Medientyp:
Text
Schlagworte:
  • "Logic Programming; Exact Inference; Answer Sets"
  • "Artificial Intelligence; Algorithms; Semantics"
  • "Logic Programming; Exact Inference; Answer Sets"
  • "Artificial Intelligence; Algorithms; Semantics"
Beschreibung:
  • Evidence often grounds temporal probabilistic relational models over time, which makes reasoning infeasible. To counteract groundings over time and to keep reasoning polynomial by restoring a lifted representation, we present temporal approximate merging (TAMe), which incorporates (i) clustering for grouping submodels without having to ground or compute marginals as well as (ii) statistical significance checks to test the fitness of the clustering outcome. In exchange for faster runtimes, TAMe introduces a bounded error that becomes negligible over time. Empirical results show that TAMe significantly improves the runtime performance of inference, while keeping errors small.

Lizenzen:
  • info:eu-repo/semantics/openAccess
  • http://creativecommons.org/licenses/by-nc/4.0/
  • http://creativecommons.org/licenses/by/4.0/
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/49d8afde-3ac2-4aff-a8dc-19a65b3204c9