Hybrid ensembles using Hopfield neural networks and Haar-like features for face detection

Link:
Autor/in:
Beteiligte Person:
  • Villa, Alessandro E.P.
Verlag/Körperschaft:
Springer
Erscheinungsjahr:
2012
Medientyp:
Text
Schlagworte:
  • Classifiers
  • Decision trees
  • Ensemble pruning
  • Classification (Of Information)
  • Learning Systems
  • Algorithms
  • AdaBoost
  • Neural Ensemble
  • Haar-like feature
  • Ensemble
  • Hopfield Neural Network
  • Classifiers
  • Decision trees
  • Ensemble pruning
  • Classification (Of Information)
  • Learning Systems
  • Algorithms
Beschreibung:
  • The success of an ensemble of classifiers depends on the diversity of the underlying features. If a classifier can address more different aspects of the analyzed objects, this allows to improve an ensemble. In this paper we propose an ensemble using as classifier members a Hopfield Neural Network (HNN) that uses Haar-like features as an input template. We analyse the HNN as the only classifier type and also combine it with threshold classifiers to a hybrid neural ensemble, so that the resulting ensemble contains –as members– threshold and neural classifiers. This ensemble architecture is evaluated for the domain of face detection. We show that a HNN that uses summed pixel intensities as input for the classification has the ability to improve the performance of an ensemble.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/fd639071-57ee-45f8-8950-13589713861f