We explain how to obtain new classical integrable field theories by assembling two affine Gaudin models into a single one. We show that the resulting affine Gaudin model depends on a parameter γ in such a way that the limit γ → 0 corresponds to the decoupling limit. Simple conditions ensuring Lorentz invariance are also presented. A first application of this method for σ-models leads to the action announced in [1] and which couples an arbitrary number N of principal chiral model fields on the same Lie group, each with a Wess-Zumino term. The affine Gaudin model descriptions of various integrable σ-models that can be used as elementary building blocks in the assembling construction are then given. This is in particular used in a second application of the method which consists in assembling N − 1 copies of the principal chiral model each with a Wess-Zumino term and one homogeneous Yang-Baxter deformation of the principal chiral model.