We investigate the structure and features of an ultralong-range triatomic Rydberg molecule formed by a Rb Rydberg atom and a KRb diatomic molecule. In our numerical description, we perform a realistic treatment of the internal rotational motion of the diatomic molecule, and take into account the Rb(n, l ≥ 3) Rydberg degenerate manifold and the energetically closest neighboring levels with principal quantum numbers n' > n and orbital quantum number l ≤ 2. We focus here on the adiabatic electronic potentials evolving from the Rb(n,l ≥ 3) and Rb(n = 26, l = 2) manifolds. The directional properties of the KRb diatomic molecule within the Rb-KRb triatomic Rydberg molecule are also analyzed in detail.