We demonstrate that a site-dependent driving of a periodic potential allows for the controlled manipulation of a quantum particle on length scales of the lattice spacing. Specifically we observe for distinct driving frequencies a near depletion of certain sites which is explained by a resonant mixing of the involved Floquet-Bloch modes occurring at these frequencies. Our results could be exploited as a scheme for a site-selective loading of, e. g., ultracold atoms into an optical lattice.