A Trace for Bimodule Categories

Link:
Autor/in:
Erscheinungsjahr:
2017
Medientyp:
Text
Schlagworte:
  • Hopf algebra
  • Category
  • Fusion category
  • Algebra
  • Module
  • Hopf algebra
  • Category
  • Fusion category
  • Algebra
  • Module
Beschreibung:
  • We study a 2-functor that assigns to a bimodule category over a finite -linear tensor category a -linear abelian category. This 2-functor can be regarded as a category-valued trace for 1-morphisms in the tricategory of finite tensor categories. It is defined by a universal property that is a categorification of Hochschild homology of bimodules over an algebra. We present several equivalent realizations of this 2-functor and show that it has a coherent cyclic invariance. Our results have applications to categories associated to circles in three-dimensional topological field theories with defects. This is made explicit for the subclass of Dijkgraaf-Witten topological field theories.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/b4b95352-7f72-48d5-9fe9-8b76d3e3400d