The H/Q-correspondence and a generalization of the supergravity c-map

Link:
Autor/in:
Erscheinungsjahr:
2024
Medientyp:
Text
Schlagworte:
  • math.DG
  • 53C10, 53C56, 53C26
  • generalized supergravity c-map
  • Conical hypercomplex manifold
  • H/Q–correspondence
Beschreibung:
  • Given a hypercomplex manifold with a rotating vector field (and additional data), we construct a conical hypercomplex manifold. As a consequence, we associate a quaternionic manifold to a hypercomplex manifold of the same dimension with a rotating vector field. This is a generalization of the HK/QK-correspondence. As an application, we show that a quaternionic manifold can be associated to a conical special complex manifold of half its dimension. Furthermore, a projective special complex manifold (with a canonical c-projective structure) associates with a quaternionic manifold. The latter is a generalization of the supergravity c-map. We do also show that the tangent bundle of any special complex manifold carries a canonical Ricci-flat hypercomplex structure, thereby generalizing the rigid c-map.
  • Given a hypercomplex manifold with a rotating vector field (and additional data), we construct a conical hypercomplex manifold. As a consequence, we associate a quaternionic manifold to a hypercomplex manifold of the same dimension with a rotating vector field. This is a generalization of the HK/QK-correspondence. As an application, we show that a quaternionic manifold can be associated to a conical special complex manifold of half its dimension. Furthermore, a projective special complex manifold (with a canonical c-projective structure) associates with a quaternionic manifold. The latter is a generalization of the supergravity c-map. We do also show that the tangent bundle of any special complex manifold carries a canonical Ricci-flat hypercomplex structure, thereby generalizing the rigid c-map.
Lizenz:
  • info:eu-repo/semantics/closedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/64e1223e-6635-4a7d-b391-70701bbf9e31