The effect of epidermal structures on leaf spectral signatures of ice plants (Aizoaceae)

Link:
Autor/in:
Erscheinungsjahr:
2015
Medientyp:
Text
Schlagworte:
  • Aizoaceae
  • Biophysical properties
  • Field spectrometry
  • Hyperspectral classification
  • Leaf epidermis
  • Leaf traits
  • Optical types
  • Plant functional types
  • Succulent plants
Beschreibung:
  • Epidermal structures (ES) of leaves are known to affect the functional properties and spectral responses. Spectral studies focused mostly on the effect of hairs or wax layers only. We studied a wider range of different ES and their impact on spectral properties. Additionally, we identified spectral regions that allow distinguishing different ES. We used a field spectrometer to measure ex situ leaf spectral responses from 350 nm–2500 nm. A spectral library for 25 species of the succulent family Aizoaceae was assembled. Five functional types were defined based on ES: flat epidermal cell surface, convex to papillary epidermal cell surface, bladder cells, hairs and wax cover. We tested the separability of ES using partial least squares discriminant analysis (PLS-DA) based on the spectral data. Subsequently, variable importance (VIP) was calculated to identify spectral regions relevant for discriminating our functional types (classes). Classification performance was high, with a kappa value of 0.9 indicating well-separable spectral classes. VIP calculations identified six spectral regions of increased importance for the classification. We confirmed and extended previous findings regarding the visible-near-infrared spectral region. Our experiments also confirmed that epidermal leaf traits can be classified due to clearly distinguishable spectral signatures across species and genera within the Aizoaceae.
Lizenz:
  • info:eu-repo/semantics/openAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/781ec916-82a2-478b-b3be-f604495326b4