Zum Inhalt springen
Theory of time-resolved nonresonant x-ray scattering for imaging ultrafast coherent electron motion
-
Link:
-
-
Autor/in:
-
-
Erscheinungsjahr:
-
2014
-
Medientyp:
-
Text
-
Beschreibung:
-
-
Future ultrafast x-ray light sources might image ultrafast coherent electron motion in real space and in real time. For a rigorous understanding of such an imaging experiment, we extend the theory of nonresonant x-ray scattering to the time domain. The role of energy resolution of the scattering detector is investigated in detail. We show that time-resolved nonresonant x-ray scattering with no energy resolution offers an opportunity to study time-dependent electronic correlations in nonequilibrium quantum systems. Furthermore, our theory presents a unified description of ultrafast x-ray scattering from electronic wave packets and the dynamical imaging of ultrafast dynamics using inelastic x-ray scattering by Abbamonte and co-workers. We examine closely the relation of the scattering signal and the linear density response of electronic wave packets. Finally, we demonstrate that time-resolved x-ray scattering from a crystal consisting of identical electronic wave packets recovers the instantaneous electron density. © 2014 American Physical Society.
-
Lizenz:
-
-
info:eu-repo/semantics/restrictedAccess
-
Quellsystem:
-
Forschungsinformationssystem der UHH
Interne Metadaten
- Quelldatensatz
- oai:www.edit.fis.uni-hamburg.de:publications/9c9b559c-fe6c-4aa2-92e1-7406847275a6