Feasibility of monitoring tumor response by tracking nanoparticle-labelled t cells using x-ray fluorescence imaging—a numerical study

Link:
Autor/in:
Erscheinungsjahr:
2021
Medientyp:
Text
Schlagworte:
  • Gold
  • Immunotherapy
  • Nanoparticles
  • Palladium
  • Simulation
  • T cell
  • X-ray fluorescence imaging
  • XFI
Beschreibung:
  • Immunotherapy has been a breakthrough in cancer treatment, yet only a subgroup of patients responds to these novel drugs. Parameters such as cytotoxic T-cell infiltration into the tumor have been proposed for the early evaluation and prediction of therapeutic response, demanded for non-invasive, sensitive and longitudinal imaging. We have evaluated the feasibility of X-ray fluorescence imaging (XFI) to track immune cells and thus monitor the immune response. For that, we have performed Monte Carlo simulations using a mouse voxel model. Spherical targets, enriched with gold or palladium fluorescence agents, were positioned within the model and imaged using a monochromatic photon beam of 53 or 85 keV. Based on our simulation results, XFI may detect as few as 730 to 2400 T cells labelled with 195 pg gold each when imaging subcutaneous tumors in mice, with a spatial resolution of 1 mm. However, the detection threshold is influenced by the depth of the tumor as surrounding tissue increases scattering and absorption, especially when utilizing palladium imaging agents with low-energy characteristic fluorescence photons. Further evaluation and conduction of in vivo animal experiments will be required to validate and advance these promising results.
Lizenz:
  • info:eu-repo/semantics/openAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/69cb0812-479f-449c-b766-0f6da4316c68