As well known in a closure space (M, D) satisfying the exchange axiom and the finiteness condition we can complete each independent subset of a generating set of M to a basis of M (Theorem A) and any two bases have the same cardinality (Theorem B) (cf. {[}1,3,4,7]). In this paper we consider closure spaces of finite type which need not satisfy the finiteness condition but a weaker condition (cf. Theorem 3.5). We prove Theorems A and B for a closure space of finite type satisfying a stronger exchange axiom. An example is given satisfying this strong exchange axiom, but not Theorems A and B.