Elementary excitations in charge-tunable InGaAs quantum dots studied by resonant Raman and resonant photoluminescence spectroscopy

Link:
Autor/in:
Erscheinungsjahr:
2011
Medientyp:
Text
Beschreibung:
  • We report on resonant optical spectroscopy of self-assembled InGaAs quantum dots in which the number of electrons can accurately be tuned to N=0,1,2 by an external gate voltage. Polarization, wave vector, and magnetic field dependent measurements enable us to clearly distinguish between resonant Raman and resonant photoluminescence processes. The Raman spectra for N=1 and 2 electrons considerably differ from each other. In particular, for N=2, the quantum-dot He, the spectra exhibit both singlet and triplet transitions reflecting the elementary many-particle interaction. Also the resonant photoluminescence spectra are significantly changed by varying the number of electrons in the QDs. For N=1 we observe complex spectra possibly induced by strong polaronic effects that are suppressed for N=2.
Lizenz:
  • info:eu-repo/semantics/closedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/dd053e7f-b86c-4b15-866d-4b48df6fc661