Peroxiredoxins 3 and 4 are overexpressed in prostate cancer tissue and affect the proliferation of prostate cancer cells in vitro.

Link:
Autor/in:
Erscheinungsjahr:
2012
Medientyp:
Text
Beschreibung:
  • The present study aimed to investigate the proteome profiling of surgically treated prostate cancers. Hereto, 2D-DIGE and mass spectrometry were performed for protein identification, and data validation for peroxiredoxin 3 and 4 (PRDX3 and PRDX4) was accomplished by reverse phase protein arrays (RPPA). The Formal Concept Analysis (FCA) method was applied to assess whether the TMPRSS2-ERG gene fusion could influence the degree of overexpression of PRDX3 and PRDX4 in prostate cancer. Lastly, we performed an in vitro functional characterization of both PRDX3 and PRDX4 using the classical human prostate cancer cell lines DU145 and LNCaP. Reverse phase protein arrays verified that the overexpression of both PRDX3 and PRDX4 in tumor samples is negatively correlated with the presence of the TMPRSS2-ERG gene fusion. Functional characterization of PRDX3 and PRDX4 activity in PCa cell lines suggests a role of these members of the peroxiredoxin family in the pathophysiology of this tumor entity.
  • The present study aimed to investigate the proteome profiling of surgically treated prostate cancers. Hereto, 2D-DIGE and mass spectrometry were performed for protein identification, and data validation for peroxiredoxin 3 and 4 (PRDX3 and PRDX4) was accomplished by reverse phase protein arrays (RPPA). The Formal Concept Analysis (FCA) method was applied to assess whether the TMPRSS2-ERG gene fusion could influence the degree of overexpression of PRDX3 and PRDX4 in prostate cancer. Lastly, we performed an in vitro functional characterization of both PRDX3 and PRDX4 using the classical human prostate cancer cell lines DU145 and LNCaP. Reverse phase protein arrays verified that the overexpression of both PRDX3 and PRDX4 in tumor samples is negatively correlated with the presence of the TMPRSS2-ERG gene fusion. Functional characterization of PRDX3 and PRDX4 activity in PCa cell lines suggests a role of these members of the peroxiredoxin family in the pathophysiology of this tumor entity.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem des UKE

Interne Metadaten
Quelldatensatz
oai:pure.atira.dk:publications/078ccca9-eff8-430a-8276-78c66bf599a5