Sensing the vibration of non-reflective surfaces with 10-dB-squeezed-light enhancement

Link:
Autor/in:
Erscheinungsjahr:
2025
Medientyp:
Text
Schlagworte:
  • Quantum Physics
  • Physics - Applied Physics
  • Physics - Optics
Beschreibung:
  • Laser light with squeezed quantum uncertainty is a powerful tool for interferometric sensing. A routine application can be found in gravitational wave observatories. A significant quantum advantage is only achievable if a large fraction of the photons are actually measured. For this reason, quantum-enhanced vibrational measurements of strongly absorbing or scattering surfaces have not been considered so far. Here we demonstrate the strongly quantum-enhanced measurement of the frequency characteristics of surface vibrations in air by measuring the air pressure wave instead. Our squeezed laser beam, which simply passes the vibrating surface, delivers a sensitivity that an ultra-stable conventional light beam in the same configuration can only achieve with ten times the power. The pressure amplitude of a ultrasonic wave of just 0.12 mPa/√Hz was clearly visible with a spatial resolution in the millimetre range and a 1 kHz resolution bandwidth. We envision applications in sensor technology where distant, highly absorbing or optically inaccessible surface vibrations in air are to be measured with limited, e.g. eye-safe, light powers.
Lizenz:
  • info:eu-repo/semantics/openAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/8e67642a-5ec3-4857-a5a1-9c0fcdd01551