CdSe/CdS-quantum rods: fluorescent probes for in vivo two-photon laser scanning microscopy

Link:
Autor/in:
Erscheinungsjahr:
2014
Medientyp:
Text
Schlagworte:
  • Quantum dots
  • Semiconductor quantum dots
  • Diblock copolymer
  • Nanocrystals
  • Semiconductor Quantum Dots
  • Zinc Sulfide
  • Quantum dots
  • Semiconductor quantum dots
  • Diblock copolymer
  • Nanocrystals
  • Semiconductor Quantum Dots
  • Zinc Sulfide
Beschreibung:
  • CdSe/CdS-Quantum-dots-quantum-rods (QDQRs) with an aspect ratio of ∼6 are prepared via the seeded growth method, encapsulated within a shell of crosslinked poly(isoprene)-block-poly(ethylene glycol) (PI-b-PEG) diblock copolymer, and transferred from the organic phase into aqueous media. Their photoluminescence quantum yield (PLQY) of 78% is not compromised by the phase transfer. Within a period of two months the PLQY of QDQRs in aqueous solution at neutral pH decreases only slightly (to ∼65%). The two-photon (TP) action cross sections of QDQRs (∼105 GM) are two orders of magnitude higher than those of CdSe/CdS/ZnS-core/shell/shell quantum dots (QDs, ∼103 GM) with comparable diameter (∼5 nm). After applying PI-b-PEG encapsulated QDQRs onto the small intestinal mucosa of mice in vivo, their strong red fluorescence can easily be observed by two-photon laser scanning microscopy (TPLSM) and clearly distinguished from autofluorescent background. Our results demonstrate that PI-b-PEG encapsulated CdSe/CdS-QDQRs are excellent probes for studying the uptake and fate of nanoparticles by two-photon imaging techniques in vivo.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/9cbc0b6d-cba6-41b6-8b59-7aeee187a3ca