Turning solid aluminium transparent by intense soft X-ray photoionization

Link:
Autor/in:
Erscheinungsjahr:
2009
Medientyp:
Text
Schlagworte:
  • Thomson scattering
  • Plasma theory
  • Warm dense
  • Inertial Confinement Fusion
  • Laser Produced Plasmas
  • Plasmas (Physics)
  • Thomson scattering
  • Plasma theory
  • Warm dense
  • Inertial Confinement Fusion
  • Laser Produced Plasmas
  • Plasmas (Physics)
Beschreibung:
  • Saturable absorption is a phenomenon readily seen in the optical and infrared wavelengths. It has never been observed in core-electron transitions owing to the short lifetime of the excited states involved and the high intensities of the soft X-rays needed. We report saturable absorption of an L-shell transition in aluminium using record intensities over 10 16 W cm 2 at a photon energy of 92 eV. From a consideration of the relevant timescales, we infer that immediately after the X-rays have passed, the sample is in an exotic state where all of the aluminium atoms have an L-shell hole, and the valence band has approximately a 9 eV temperature, whereas the atoms are still on their crystallographic positions. Subsequently, Auger decay heats the material to the warm dense matter regime, at around 25 eV temperatures. The method is an ideal candidate to study homogeneous warm dense matter, highly relevant to planetary science, astrophysics and inertial confinement fusion. © 2009 Macmillan Publishers Limited. All rights reserved.
Lizenz:
  • info:eu-repo/semantics/closedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/2960b493-9004-43cd-94f2-57a295caa690