Topological semimetal in a fermionic optical lattice

Link:
Autor/in:
Erscheinungsjahr:
2012
Medientyp:
Text
Beschreibung:
  • Optical lattices have an important role in advancing our understandingof correlated quantum matter. The recent implementation of orbital degrees of freedom in chequerboard and hexagonal optical lattices opens up a new avenue towards discovering novel quantum states of matter that have no prior analogues in solid-state electronic materials. Here, we predict that an exotic topological semimetal emerges as a parity-protected gapless state in the orbital bands of a two-dimensional fermionic optical lattice. This new quantum state is characterized by a parabolic band-degeneracy point with Berry flux 2π, in sharp contrast to the π flux of Dirac points as in graphene. We show that the appearance of this topological liquid is universal for all lattices with D4 point-group symmetry, as long as orbitals with opposite parities hybridize strongly with each other and the band degeneracy is protected by odd parity. Turning on inter-particle repulsive interactions, the system undergoes a phase transition to a topological insulator whose experimental signature includes chiral gapless domain-wall modes, reminiscent of quantum Hall edge states.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/28784cfb-6946-490d-8a10-2307627daf5a