Categorizing Comparative Sentences

Link:
Autor/in:
Beteiligte Personen:
  • Stein, Benno
  • Wachsmuth, Henning
Verlag/Körperschaft:
Association for Computational Linguistics
Erscheinungsjahr:
2019
Medientyp:
Text
Beschreibung:
  • We tackle the tasks of automatically identifying comparative sentences and categorizing the intended preference (e.g., ``Python has better NLP libraries than MATLAB'' → Python, better, MATLAB). To this end, we manually annotate 7,199 sentences for 217 distinct target item pairs from several domains (27% of the sentences contain an oriented comparison in the sense of ``better'' or ``worse''). A gradient boosting model based on pre-trained sentence embeddings reaches an F1 score of 85% in our experimental evaluation. The model can be used to extract comparative sentences for pro/con argumentation in comparative / argument search engines or debating technologies.
Lizenz:
  • info:eu-repo/semantics/openAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/766b305a-d861-4b5c-9107-6e1517b6aeb4