A family of HLL-type solvers for the generalized Riemann problem

Link:
Autor/in:
Erscheinungsjahr:
2018
Medientyp:
Text
Schlagworte:
  • Generalized Riemann problems
  • High order finite volume methods
  • Hyperbolic conservation laws
Beschreibung:
  • The generalized Riemann problem (GRP) is the initial value problem for a conservation law with piecewise smooth, but discontinuous initial data. We provide a new method for solving the GRP approximately, that can be used as a building block for high order finite volume or discontinuous Galerkin methods. Our new GRP solvers use the approximate states and wave speeds obtained through a HLL-type Riemann solver and use this information to build an approximation of the state in the GRP of any order. What is new about this approach compared to most previous solvers is that we no longer need to solve a classical Riemann problem exactly. We give a detailed explanation of this strategy for HLL and HLLC solvers for the Euler equations, as well as for the HLLD solver for MHD equations. We demonstrate the performance of the solvers from this new family of GRP solvers for a broad range of test problems.
Lizenz:
  • info:eu-repo/semantics/closedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/b90a4562-b35d-4fb1-8f0e-3e4820290ecd