On the error behaviour of the filtered back projection

Link:
Autor/in:
Verlag/Körperschaft:
Wiley - VCH Verlag GmbH & CO. KGaA
Erscheinungsjahr:
2016
Medientyp:
Text
Beschreibung:
  • The filtered back projection (FBP) formula allows us to reconstruct bivariate functions from given Radon samples. However, the FBP formula is numerically unstable and low‐pass filters with finite bandwidth and a compactly supported window function are employed to make the reconstruction by FBP less sensitive to noise. In this paper we analyse the inherent reconstruction error which is incurred by the application of a low‐pass filter with finite bandwidth. We present L 2 ‐error estimates on Sobolev spaces of fractional order along with asymptotic convergence rates, where the filter's bandwidth goes to infinity. (© 2016 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Lizenz:
  • info:eu-repo/semantics/openAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/29e4712c-af60-4712-a855-785fd57b5c39