A representation of hyperbolic motions including the infinite-dimensional case

Link:
Autor/in:
Erscheinungsjahr:
2011
Medientyp:
Text
Schlagworte:
  • Real inner product space
  • hyperbolic motion
  • hyperbolic translation
  • orthogonal transformation
Beschreibung:
  • Let X be a real inner product space of (finite or infinite) dimension ≥ 2, O(X) be its group of all surjective (hence bijective) orthogonal transformations of X, T(X) be the set of all hyperbolic translations of X and M(X, hyp) be the group of all hyperbolic motions of X. The following theorem will be proved in this note. Every μ ε M(X, hyp) has a representation μ = T · ω with uniquely determined T ε T(X) and uniquely determined ω ε O(X). © 2011 Springer Basel AG.
Lizenz:
  • info:eu-repo/semantics/closedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/a3638bb3-a5cf-45d5-a333-2589d02b620f