Zum Inhalt springen
A representation of hyperbolic motions including the infinite-dimensional case
-
Link:
-
-
Autor/in:
-
-
Erscheinungsjahr:
-
2011
-
Medientyp:
-
Text
-
Schlagworte:
-
-
Real inner product space
-
hyperbolic motion
-
hyperbolic translation
-
orthogonal transformation
-
Beschreibung:
-
-
Let X be a real inner product space of (finite or infinite) dimension ≥ 2, O(X) be its group of all surjective (hence bijective) orthogonal transformations of X, T(X) be the set of all hyperbolic translations of X and M(X, hyp) be the group of all hyperbolic motions of X. The following theorem will be proved in this note. Every μ ε M(X, hyp) has a representation μ = T · ω with uniquely determined T ε T(X) and uniquely determined ω ε O(X). © 2011 Springer Basel AG.
-
Lizenz:
-
-
info:eu-repo/semantics/closedAccess
-
Quellsystem:
-
Forschungsinformationssystem der UHH
Interne Metadaten
- Quelldatensatz
- oai:www.edit.fis.uni-hamburg.de:publications/a3638bb3-a5cf-45d5-a333-2589d02b620f