Zum Inhalt springen
A representation of hyperbolic motions including the infinite-dimensional case
- Link:
-
- Autor/in:
-
- Erscheinungsjahr:
- 2011
- Medientyp:
- Text
- Schlagworte:
-
- Real inner product space
- hyperbolic motion
- hyperbolic translation
- orthogonal transformation
- Beschreibung:
-
- Let X be a real inner product space of (finite or infinite) dimension ≥ 2, O(X) be its group of all surjective (hence bijective) orthogonal transformations of X, T(X) be the set of all hyperbolic translations of X and M(X, hyp) be the group of all hyperbolic motions of X. The following theorem will be proved in this note. Every μ ε M(X, hyp) has a representation μ = T · ω with uniquely determined T ε T(X) and uniquely determined ω ε O(X). © 2011 Springer Basel AG.
- Lizenz:
-
- info:eu-repo/semantics/closedAccess
- Quellsystem:
- Forschungsinformationssystem der UHH
Interne Metadaten
- Quelldatensatz
- oai:www.edit.fis.uni-hamburg.de:publications/a3638bb3-a5cf-45d5-a333-2589d02b620f