This paper presents a novel concept for joint light source identification and localization (JLIL) with subsequent interference suppression using a liquid crystal display (LCD)-based receiver. The JLIL concept is particularly suitable for multiple-input single-output visible-light-communication settings, where an LCD-based receiver must be able to identify a desired light source before suppressing interfering ones. Given a basic visible-light-communication setup, in a first step modifications required both on the transmitter and the receiver side are identified. Subsequently, the concept for LCD-based JLIL is introduced, and its performance is illustrated by means of simulation results. In this context, intersymbol interference effects are investigated and a known ambiguity problem is overcome. Finally, results of an experimental verification are reported as a proof of concept. It is shown that the derived simulation model accurately predicts measurement results. The latter confirm a virtually error-free light