Characterisation of MCP-600D and MCP-700D thermoluminescence detectors and their applicability for photoneutron detection.

Link:
Autor/in:
Erscheinungsjahr:
2008
Medientyp:
Text
Beschreibung:
  • This paper presents the characteristics of two high-sensitive LiF:Mg,Cu,P thermoluminescence detectors (TLDs) named MCP-600D and MCP-700D [thermoluminescence detector (TLD) Poland]. Furthermore, the applicability of both detectors used as a paired system for photoneutron detection in a high-energy photon field at a linear accelerator is shown. For MCP-600D and MCP-700D, the batch homogeneity is within 22 and 14%, respectively (2 SD). Correction for the individual response of each TLD leads to a reproducibility of 5 and 4%, respectively Both TLD types reveal a linear detector response to dose up to 4 Gy. The energy dependence for both is within 2% for 4 and 6 MV photons. For a 15 MV photon beam, the MCP-600D shows a higher response (10%); compared with the MCP-700D (2%). The MCP-600D is capable of detecting extra doses due to photoneutrons in a 15 MV photon exposure; however, the signal for an open field of the used linear accelerator is in the order of the reproducibility. Using a kind of albedo technique allows detection of photoneutrons in the open photon field anyhow. The neutron detection limit is 10 microGy neutron dose per 1 Gy photon dose. Reproducibility of the TLDs, however, requires more than 10 detectors to determine results with an uncertainty of
  • This paper presents the characteristics of two high-sensitive LiF:Mg,Cu,P thermoluminescence detectors (TLDs) named MCP-600D and MCP-700D [thermoluminescence detector (TLD) Poland]. Furthermore, the applicability of both detectors used as a paired system for photoneutron detection in a high-energy photon field at a linear accelerator is shown. For MCP-600D and MCP-700D, the batch homogeneity is within 22 and 14%, respectively (2 SD). Correction for the individual response of each TLD leads to a reproducibility of 5 and 4%, respectively Both TLD types reveal a linear detector response to dose up to 4 Gy. The energy dependence for both is within 2% for 4 and 6 MV photons. For a 15 MV photon beam, the MCP-600D shows a higher response (10%); compared with the MCP-700D (2%). The MCP-600D is capable of detecting extra doses due to photoneutrons in a 15 MV photon exposure; however, the signal for an open field of the used linear accelerator is in the order of the reproducibility. Using a kind of albedo technique allows detection of photoneutrons in the open photon field anyhow. The neutron detection limit is 10 microGy neutron dose per 1 Gy photon dose. Reproducibility of the TLDs, however, requires more than 10 detectors to determine results with an uncertainty of
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem des UKE

Interne Metadaten
Quelldatensatz
oai:pure.atira.dk:publications/89682f44-deba-4c4d-b1be-bf13f064f88f