Recovering fibres from fibreboards for wood polymer composites production

Link:
Autor/in:
Erscheinungsjahr:
2018
Medientyp:
Text
Schlagworte:
  • Cascade use
  • MDF
  • fibreboard
  • mechanical properties
  • physical properties
  • recycling
  • thermo-hydrolytic disintegration
  • wood polymer composite
Beschreibung:
  • In most countries, fibreboards are not recovered after utilization but burned for energy production. This study aims at recovering fibres from industrial fibreboards and reusing them as reinforcement elements in wood polymer composites (WPC). Recovered fibre (RF) material was generated by the thermo-hydrolytic disintegration of medium and high density fibreboards bonded with urea-formaldehyde resin. Various formulations of RF and polypropylene were used with or without the addition of the coupling agent to manufacture WPC using a co-rotating extruder. Test specimens were produced via injection moulding whereby those containing ‘virgin’ fibres served as a reference with respect to mechanical and physical properties. WPC formulations containing RF and ‘virgin’ fibres exhibited similar results, but composites containing RF exhibited improved mechanical and water-related properties, especially without coupling agent. The study indicates that recovered fibres are suitable to produce WPC with very similar physico-mechanical properties as those from ‘virgin’ fibres.
  • In most countries, fibreboards are not recovered after utilization but burned for energy production. This study aims at recovering fibres from industrial fibreboards and reusing them as reinforcement elements in wood polymer composites (WPC). Recovered fibre (RF) material was generated by the thermo-hydrolytic disintegration of medium and high density fibreboards bonded with urea-formaldehyde resin. Various formulations of RF and polypropylene were used with or without the addition of the coupling agent to manufacture WPC using a co-rotating extruder. Test specimens were produced via injection moulding whereby those containing ‘virgin’ fibres served as a reference with respect to mechanical and physical properties. WPC formulations containing RF and ‘virgin’ fibres exhibited similar results, but composites containing RF exhibited improved mechanical and water-related properties, especially without coupling agent. The study indicates that recovered fibres are suitable to produce WPC with very similar physico-mechanical properties as those from ‘virgin’ fibres.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/0f843d5d-0fdd-43d8-9415-b01234cedee8