Reconstructing compact metrizable spaces

Link:
Autor/in:
Erscheinungsjahr:
2017
Medientyp:
Text
Schlagworte:
  • Finite compactifications
  • Reconstruction conjecture
  • Topological reconstruction
  • Universal sequence
Beschreibung:
  • The deck, D(X), of a topological space X is the set D(X) = {[X\{x}]: x ∈ X}, where [Y] denotes the homeomorphism class of Y. A space X is (topologically) reconstructible if whenever D(Z) = D(X), then Z is homeomorphic to X. It is known that every (metrizable) continuum is reconstructible, whereas the Cantor set is non-reconstructible. The main result of this paper characterises the non-reconstructible compact metrizable spaces as precisely those where for each point x there is a sequence <Bx/n: n ∈ ℕ> of pairwise disjoint clopen subsets converging to x such that Bxn and Byn are homeomorphic for each n and all x and y. In a non-reconstructible compact metrizable space the set of 1-point components forms a dense Gδ. For h-homogeneous spaces, this condition is sufficient for non-reconstruction. A wide variety of spaces with a dense Gδ set of 1-point components is presented, some reconstructible and others not reconstructible.

Lizenz:
  • info:eu-repo/semantics/openAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/cfca8530-ac77-4479-b86e-8b8142260140