On the integrable hierarchy for the resolved conifold

Link:
Autor/in:
Erscheinungsjahr:
2022
Medientyp:
Text
Beschreibung:
  • We provide a direct proof of a conjecture of Brini relating the Gromov–Witten (GW) theory of the resolved conifold to the Ablowitz–Ladik (AL) integrable hierarchy at the level of primaries. In doing so, we use a functional representation of the AL hierarchy as well as a difference equation for the GW potential. In particular, we express certain distinguished solutions of the difference equation in terms of an analytic function which is a specialization of a Tau function put forward by Bridgeland in the study of wall-crossing phenomena of Donaldson–Thomas invariants.
Lizenz:
  • info:eu-repo/semantics/closedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/68e59dfe-248b-4f0d-b49c-32ed641174aa