Joint exceedances of random products

Link:
Autor/in:
Erscheinungsjahr:
2018
Medientyp:
Text
Schlagworte:
  • Extreme value theory
  • Linear programming
  • M-convergence
  • Random products
  • Regular variation
Beschreibung:
  • We analyze the joint extremal behavior of n random products of the form φm j=1 X aij j , 1 ≤ i ≤ n, for non-negative, independent regularly varying random variables X1, . . . , Xm and general coefficients aij € R. Products of this form appear for example if one observes a linear time series with gamma type innovations at n points in time. We combine arguments of linear optimization and a generalized concept of regular variation on cones to show that the asymptotic behavior of joint exceedance probabilities of these products is determined by the solution of a linear program related to the matrix A = (aij ).
Lizenz:
  • info:eu-repo/semantics/openAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/cd9d0a35-5727-4357-856e-b49eb9209f8c